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Convection in two-layer systems with an anomalous thermocapillary effect
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Recently, it was found that the anomalous thermocapillary effect~the interfacial tension increases with
temperature! is typical for various liquid-liquid systems. We consider the combined action of buoyancy and
thermocapillary instability mechanisms in systems with an anomalous thermocapillary effect on the interface.
The problem is solved in both linear and nonlinear formulations. A special type of oscillatory instability has
been found and investigated.

PACS number~s!: 47.27.2i
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I. INTRODUCTION

The phenomenon of Rayleigh–Be´nard convection in a
horizontal layer between rigid boundaries, which is a pa
digmatic example of the pattern formation in nonequilibriu
systems, has been studied extensively during the last dec
@1,2#. The convection phenomena in the presence ofan in-
terfaceare still less investigated.

Two main instability mechanisms exist in systems with
interface. Thebuoyancyinstability mechanism~caused by a
volumeeffect! is more important for relatively thick layers
while the thermocapillarity ~an interfacial effect! plays the
dominant role in the case of thin layers or under microgr
ity conditions. Many works are devoted to the limit cases
‘‘pure’’ buoyancy-driven~Rayleigh–Be´nard! convection and
‘‘pure’’ thermocapillarity-driven ~Marangoni–Be´nard! con-
vection. For the Rayleigh–Be´nard convection in system
with an interface both stationary@3# and oscillatory@4–7#
instabilities are possible; for a review, see Ref.@8#. Several
phenomena, which include cellular pattern formation@9–13#,
deformational instability leading to the appearance of a
spot@14,15,13#, longitudinal@16–19# and transverse@20,21#,
oscillatory instabilities, have been discovered in the case
the Marangoni–Be´nard convection.

Novel effects are expected to arise from the combin
action of buoyancy and thermocapillary forces. There
only a few works where the combined action of both ins
bility mechanisms is investigated. The case where both
stability mechanisms produce forces acting in the same
rection, is better explored. Such a situation takes place,
for the stationary convection in a liquid layer with the fre
upper surface in the case of the normal thermocapillary
fect ~when the surface tension decreases with temperatu!.
The corresponding linear stability theory was developed
Nield @22# in the framework of a one-layer approach, a
later it was extended to the case of liquid–liquid two-lay
systems by Refs.@23,24#. The nonlinear development of in
stability was studied theoretically in Refs.@25,26# and ex-
perimentally in Refs.@23,24,27,28#.

There is another possibility: both effects produce forc
acting in opposite directions. In the case of the normal th
PRE 621063-651X/2000/62~3!/3619~13!/$15.00
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mocapillary effect, this situation takes place in a two-lay
system if the buoyancy convection is generated mainly in
upper layer @29#. The interfacial temperature distributio
produced by the buoyancy convection generates tange
stresses which brake the fluid motion. In this case, the
tionary instability threshold increases. Moreover, in the c
where the characteristic time scales of heat transfer and
mentum transfer differ essentially, the competition betwe
two mechanisms of stationary instability can produce os
lations @8,29#.

In this paper we investigate the interaction between bu
ancy and thermocapillary instability mechanisms in a tw
layer system in the case of ananomalousthermocapillary
effect ~the interfacial tension increases with temperature!. It
was observed in aqueous alcohol solutions, nematic liq
crystals, binary metallic alloys, etc.~see, e.g., Ref.@30# and
references therein!. There are indications that the occurren
of an anomalous thermocapillary effect might be a typi
property of various liquid–liquid systems@31#. That is why
the realistic models of multilayer convection should take in
account the possibility of the anomalous thermocapillary
fect.

To our knowledge, until now the investigation of conve
tion in a two-layer system with anomalous thermocapilla
effect was done only in the series of papers@32–34#. In those
papers, the attention was paid to the buoyancy-driven c
vection in the presence of the thermocapillary effect, int
face viscosity, and interface deformation. It was found t
the anomalous thermocapillary effect could essentially
hance the width of the interval of the oscillatory instabilit

Here we demonstrate that the anomalous thermocapil
effect can lead to a new kind of the oscillatory instabili
caused by the competition between the buoyancy force
the thermocapillary tangential stresses. This kind of the
cillatory instability sets in when the buoyancy convection
generated mainly in the lower layer.

The paper is organized as follows. After formulating t
problem in Sec. II we analyze the linear stability of the sy
tem in Sec. III. The special features of the particular conv
tive regimes are studied by means of two-dimensional
merical simulations in Sec. IV. To be close to real system
3619 ©2000 The American Physical Society
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3620 PRE 62L. M. BRAVERMAN et al.
the majority of calculations are done for the two-layer s
tem 10 cS silicone oil over ethylenglycol which reveals t
anomalous thermocapillary effect.

II. FORMULATION OF THE PROBLEM

We consider a system of two horizontal layers of imm
cible fluids with different physical properties~see Fig. 1!.
The system is bounded from above and from below by t
isothermic rigid plates kept at constant different temperatu
~the total temperature drop isQ; the heating is from below!.
It is assumed that the interfacial tensions grows linearly
with the temperature:s5s02aT, wherea,0. We disre-
gard the deformation of the interface, because it can es
tially influence the convective instability only in the case
extremely thin layers@15# or in the case of a small densit
difference between fluids@33#, @34#. These cases are not co
sidered in this paper. The variables referring to the up
layer are marked by index 1, the variables referring to
lower layer are marked by index 2.

Density, kinematic and dynamic viscosity, heat cond
tivity, thermal diffusivity, heat expansion coefficient of th
mth fluid are, respectively,rm , nm , hm , km , xm, andbm ;
am is the thickness of themth layer (m51,2). Let us intro-
duce the following notations:

r5r1 /r2 , n5n1 /n2 , h5h1 /h2 , k5k1 /k2 ,

x5x1 /x2 , b5b1 /b2 , a5a2 /a1 .

As the units of length, time, velocity, pressure, and tempe
ture we usea1 , a1

2/n1 , n1 /a1 , r1n1
2/a1

2, andQ.
The investigation of the convection were performed

the 10 cS silicone oil–ethylenglycol real system. The phy
cal parameters are summarized in Table I. The measurem
of the temperature dependence of interfacial tension, don
the LAUDA AG ~Germany!, showed the existence of a
anomalous thermocapillary effect:a520.0127 mN/m K. A
more detailed study of this effect is in preparation@31#. The
ratios of parameters of two fluids are:r50.846, n
50.6493,h50.549, k50.6194,x51.096, b51.4516; the
Prandtl numberP594.

FIG. 1. Geometrical configuration of the region and coordin
axes.
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The complete nonlinear equations of convection in fram
of the Boussinesq approximation@8# for both fluids have the
following form:

]v1

]t
1~v1•“ !v152“p11¹2v11GT1g,

]T1

]t
1v1•“T15

1

P
¹2T1 , ~1!

“•v150;

]v2

]t
1~v2•“ !v252r“p21

1

n
¹2v21

G

b
T2g,

]T2

]t
1v2•“T25

1

xP
¹2T2 , ~2!

“•v250.

HereG5gb1Qa1
3/n1

2 is the Grashof number (g is the grav-
ity acceleration!, P5n1 /x1 is the Prandtl number,g is the
unit vector directed vertically upward. The conditions on t
isothermic rigid boundaries are:

v150, T150, z51, ~3!

v250, T251, z52a. ~4!

The boundary conditions on the interfacez50 include
conditions for the tangential stresses:

h
]v1x

]z
2

]v2x

]z
2

hM

P

]T1

]x
50, ~5!

z50

h
]v1y

]z
2

]v2y

]z
2

hM

P

]T1

]y
50, ~6!

the continuity of the velocity field:

v15v2 , z50, ~7!

the continuity of the temperature field:

T15T2 , z50, ~8!

and the continuity of the heat flux normal components:

k
]T1

]z
2

]T2

]z
50, z50. ~9!

e

TABLE I. Material properties of the silicone oil–ethylenglycol system.

r i n i k i x i b i

(k g m23) (1024 m2 s21) (W m21 K21) (1024 m2 s21) (K21)

Silicone oil ~i51! 940.0 0.10 0.16 0.00106 0.0009
Ethylenglycol~i52! 1110.0 0.154 0.258 0.00097 0.0006



s
e

e

g
s o

s
r

s
ve

-

r-

ng

ts.
the
ty

tis-
d
m-
ns
m

-

y

ncy
the

er,
p-
ter-
her-
tion
ef-
p-
the

e
es

.
ity,

PRE 62 3621CONVECTION IN TWO-LAYER SYSTEMS WITH . . .
Here M5aQa1 /h1x1 is the Marangoni number, which i
negative by definition in the case of an anomalous th
mocapillary effect.

The problem~1!–~9! for any choice of parameters has th
solution

v1
05v2

050,

T1
052

z21

11ka
, T2

052
kz21

11ka
,

p1
052

G

11ka S z2

2
2zD , ~10!

p2
052

G

rb~11ka! S kz2

2
2zD ,

corresponding to mechanical equilibrium. In the followin
sections we shall investigate its instability and the regime
convection which appear due to this instability.

III. LINEAR STABILITY THEORY

A. Description of the method

The stability of the mechanical equilibrium can be inve
tigated in frames of the linear stability theory. The bounda
value problem~1!–~9! is linearized around the solution~10!.
The solutions of the linearized problem are presented a
superposition of normal modes characterized by a wave
tor k5(kx ,ky) and a complex growth ratel5l r1 il i :

@ ṽ1~z!,p̃1~z!,T̃1~z!,ṽ2~z!,p̃2~z!,T̃2~z!#

3exp~ ikxx1 ikyy1lt !; ~11!

where subsequently the sign ‘‘tilde’’ will be omitted.
Since the problem is isotropic, the growth ratel depends

only on the wave vector modulusk5uku but not on its direc-
tion. That is why it is sufficient to consider only two
dimensional disturbances withk5(k,0) which do not depend
on the coordinatey. Introducing the stream function distu
bances

vmx5cm8 , vmz52 ikcm~m51,2!,

where the prime stands ford/dz, and eliminating pressure
disturbances in the usual way, we obtain the followi
boundary eigenvalue problem:

2lDcm52cmD2cm1 ikGbmTm , ~12!

lTm2 ikAmcm5
dm

P
DTm , ~m51,2!, ~13!

c15c185T150, z51, ~14!

c25c285T250, z52a, ~15!

hc192c292
ikhM

P
T150, z50, ~16!
r-

f

-
y

a
c-

c185c28 , ~17!

c15c250, ~18!

T15T2 , ~19!

kT185T28 , ~20!

where c15b15d15e151, c251/n, b251/b, d2

51/x, e25r; A15dT1
0/dz521/(11ka), A25dT2

0/dz
52k/(11ka) are the dimensionless temperature gradien

We found the linear stability boundaries by means of
following method. In the case of a stationary instabili
mode, we putl50 for fixed values ofG andk. We construct
three linearly independent solutions of Eqs.~12! and~13! in
the upper fluid satisfying the boundary conditions~14!, and
three linearly independent solutions in the lower fluid sa
fying the boundary conditions~15!, by means of the standar
Runge–Kutta–Merson method, and construct a linear co
bination of these solutions satisfying boundary conditio
~17!–~20!. Then we calculate the Marangoni number fro
the boundary condition~16!. In the case of an oscillatory
instability, we putl r50 and take some triall i . The Ma-
rangoni number obtained from Eq.~16! is generally com-
plex: M5Mr1 iM i . Then frequencyl i and the correspond
ing stability boundaryM5Mr is found from the relation

Mi~l i !50

by means of iterations. Thus, we obtain theneutral surfaces
l r(M ,G,k)50 in the formM5M (G,k).

B. Stationary instability „layers with equal thicknesses…

Let us define thelocal Rayleigh numbers determined b
parameters of each layer:

Rm5
gbmAmam

4

nmxm
, m51,2.

Their ratio

R2

R1
5

knxa4

b
,

can be used in order to estimate in which layer the buoya
effects are stronger. We will consider the system with
physical parameters given in Table I. If we choosea51,
thenR2 /R150.304. BecauseR1.R2, we can expect that the
buoyancy convection is generated mainly in the upper lay
while in the lower layer only a weak induced motion a
pears. In this case the temperature distribution on the in
face formed by the buoyancy convection, generates the t
mocapillary stresses which support the buoyancy convec
~under the condition of the anomalous thermocapillary
fect, i.e.,M,0). In such a situation we can expect the a
pearance of the stationary instability and the absence of
oscillatory one.

Let us describe the results of calculations in the casa
51. The typical cross sections of the neutral surfac
l r(G,M ,k) for fixed values ofG are presented in Fig. 2
Solid lines correspond to boundaries of stationary instabil
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3622 PRE 62L. M. BRAVERMAN et al.
dashed lines correspond to boundaries of oscillatory insta
ity. If G50, the stationary instability would be realized on
in the case ofnormal thermocapillary effect (M.0, see line
1!. WhenG grows, a local maximum appears on the statio
ary stability curve~see line 2!. For a certain value ofG the
maximum tends to infinity, and the stationary stability cur
is split into three fragments~see line 3!. Only one of these
fragments is located in the physical regionM,0 and de-
scribes some stationary instability in the case ofanomalous
thermocapillary effect. AtG522.6 this ‘‘physical’’ fragment
of the stability curve touches the axisM50. That means tha
for this value of the Grashof number the buoyancy conv
tion would appear in the system in the absence of the t
mocapillary effect. For larger values ofG this fragment
crosses the axisM50 ~see line 4!. The boundaries of oscil
latory instability ~lines 5, 6! are located in the regionM.0
which is physically irrelevant.

The stability region obtained by minimization of the ne
tral curves with respect tok is shown in Fig. 3~lines 1, 2!.
Let us emphasize that in real experiments the geometric
rameters of the system are fixed, while the temperature d
is changed, so that the Marangoni numberM and the Grashof
numberG are proportional, and their ratio

K5
uM u
G

5
uauP

gb1r1a1
2

FIG. 2. Neutral curves in the casea51: G50 ~line 1!, G55
~lines 2, 5!, G56 ~lines 3, 6!, G524 ~line 4!.

FIG. 3. Stability region in the casea51: stationary stability
boundary~line 1!; oscillatory stability boundary~line 2!; straight
line corresponding toK55.75.
il-

-

-
r-

a-
op

is constant, e.g., in the case of the two-layer system wita
51 and the total thicknessa11a251 cm we find K
55.75 ~see line 3 of Fig. 3!. In the latter case, using th
results shown in Fig. 3 we can predict that the convect
will start as G5G* 521.4, M5M* 52123 which corre-
sponds to the total temperature dropQ51.94 K.

C. Oscillatory instability „layers with unequal thicknesses…

Next we consider the case where the buoyancy convec
first appears mainly in the lower layer. As an example,
present results obtained for the thickness ratio ofa51.8 cor-
responding to the Rayleigh numbers’ ratioR2 /R153.19. We
now have the situation where the buoyancy convection fi
appears in the lower layer.

In order to understand the relations between buoya
and thermocapillary effect in the given system, let us assu
that there is a local positive temperature fluctuation~‘‘hot
spot’’! on the interface. The buoyancy generates an upstr
flow beneath the hot spot, and a divergent flow on the in
face near the hot spot. At the same time, the anoma
thermocapillary effect produces thermocapillary stresses
tend to form a convergent flow on the interface near the
spot and a downstream flow in the lower layer. Thus, th
mocapillary stresses tend to suppress the buoyancy con
tion. The competition between the buoyancy and the th
mocapillary effect leads to stabilization of the stationa
instability. Moreover, the asynchronic action of the buo
ancy and the thermocapillary effect may lead to the appe
ance of oscillatory instability.

In the next section we shall discuss the convective os
lations in more detail. Here we present the results of
linear stability theory. Some typical neutral curves are sho
in Fig. 4~a!. Corresponding dependencies of the frequencyl i
on the wave numberk along the neutral curves are present
in Fig. 4~b!. One can see that in the region 15,G,15.5 the
stationary neutral curves~solid lines! change rather slowly
with G. As G,G1515.1, the oscillatory neutral curve i
absent. AtG.G1, a closed region of oscillatory instability
~dashed line! appears. It grows rapidly withG and at last
touches the stationary neutral curve asG5G2515.3. The
stability boundaries in the (M –G)-plane for the stationary
and oscillatory instabilities are shown in Fig. 5. One c
conclude that in the caseK5uM u/G,K* 531.7 only the
stationary instability will be observed. Using the physic
parameters of the system, we find that the latter case
take place if the total thickness of the two-layer system
larger than 5.9 mm. If the thickness of the two-layer syst
is smaller than the critical one, some slow oscillations app
near the threshold. The dependencies of the frequencv
5l i and of the wave number on the ratioK for the critical
oscillatory mode are shown in Fig. 6. Let us note that
dimensionalfrequencyV5vn1 /a1

2. For instance, in the cas
of the total thicknessa11a254 mm (K570.3) we findV
50.21 s21.

IV. 2D SIMULATIONS OF NONLINEAR
CONVECTIVE REGIMES

The linear theory predicts the behavior of infinitesima
small disturbances in the infinite layers. Actually, the re
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system has rigid lateral boundaries. The influence of the
eral boundaries depends on the kind of instability. In the c
of a stationary instability, which is alwaysabsolute~the dis-
turbance grows in any spatial point! the influence of the lat-
eral boundaries is restricted to a quantization of eigenmo
and to an additional viscous dissipation near the bounda
As the result, the threshold Marangoni number,uM u, and
Grashof number,G, are slightly enhanced compared with th
case of an infinite layer. In the case of an oscillatory ins
bility, the influence of the lateral boundaries can be mu
stronger, especially near the threshold where the oscilla

FIG. 4. ~a! Neutral curves in the casea51.8: G515 ~line 1!,
G515.2~lines 2, 4!, G515.5~lines 3, 5!. ~b! Dependenciesl i(k):
G515.2 ~line 4!, G515.5 ~line 5!.

FIG. 5. Stability regions in the casea51.8; I–stability, II–
stationary instability; III–oscillatory instability.
t-
e

es
s.

-
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FIG. 6. Dependencies of~a! critical frequencyv5ul i u and ~b!
critical wave numberk on the ratioK in the casea51.8.

FIG. 7. Stationary convective motion driven mainly by the
mocapillarity. ~a! Streamlines and~b! isotherms. Parameters:a
51; G525, M524.2753104.



es
e
e-
n of
e
ex-
of
in-

ies,
ed
ct
ta-
g
ri-
to

n-
at

3624 PRE 62L. M. BRAVERMAN et al.
FIG. 8. The diagram of different regimes in the plane (G,
2M ). Triangles–mechanical equilibrium, squares–stationary st
circles–symmetric oscillations, stars–asymmetric oscillations.
instability isconvective. In the latter case, small disturbanc
in the infinite layers grow only in the moving referenc
frame but decay in any fixed spatial point. In the finite r
gion, some steady wavy patterns can appear in the regio
a convective instability, only if the reflection of waves on th
lateral boundaries is strong enough. Generally, one can
pect that the shift of the critical Marangoni and Grash
numbers is more essential in the case of the oscillatory
stability than in the case of the stationary instability.

In order to analyze the influence of the lateral boundar
we perform nonlinear simulations of convection in a clos
cavity. Another reason for nonlinear simulations is the fa
that the linear theory cannot predict the type of the nons
tionary motion, e.g., the motion in the form of a travelin
wave or a standing wave. Motivated by premilinary expe
ments showing roll-like structures, we restrict ourselves
two-dimensional simulations.

A. Description of the method

We have performed nonlinear simulations of nonstatio
ary two-dimensional flows@vmy50, (m51,2); the fields of
physical variables do not depend ony#. In this case, we can
introduce the stream function:

e,
le
FIG. 9. Stationary convective motions driven by buoyancy.~a! Streamlines and~b! isotherms. The figure shows the two possib
solutions named by structure A~a1!, ~b1! and B ~a2!, ~b2!. Parameters:a51.8; G518, M50.
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FIG. 10. ~a1!–~f1! Streamlines and~a2!–~f2! isotherms for the oscillatory motions in the system witha51.8; G518, M523933.
vmx5
]cm

]z
, vmz52

]cm

]x
~m51,2!.

Eliminating the pressure and defining the vorticity

fm5
]vmz

]x
2

]vmx

]z
,

connected withcm by

¹2cm52fm ,

we can rewrite the boundary value problem~1!–~9! to the
following form:
]fm

]t
1

]cm

]z

]fm

]x
2

]cm

]x

]fm

]z
5cm¹2fm1bmG

]Tm

]x
,

~21!

]Tm

]t
1

]cm

]z

]Tm

]x
2

]cm

]x

]Tm

]z
5

dm

P
¹2Tm , ~22!

¹2cm52fm , m51,2, ~23!

c15
]c1

]z
50, T150, z51, ~24!
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FIG. 10 ~Continued!.
e

c25
]c2

]z
50, T251, z52a, ~25!

c15c250,
]c1

]z
5

]c2

]z
, z50, ~26!

T15T2 , k
]T1

]z
5

]T2

]z
, ~27!
f25hf11
Mh

P

]T1

]x
. ~28!

The calculations were performed in a finite region 0,x
,L with the following types of boundary conditions on th
lateral boundaries:

~a! Free heat-insulated boundaries:
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cm5fm5
]Tm

]x
50, m51,2, x50,L. ~29!

~b! Rigid well-conducting boundaries~with the fixed tem-
perature distribution!:

FIG. 11. Time evolution of integral characteristicsSil , i 51,2;
a51.8; G518; M523933.

FIG. 12. Phase trajectory of the oscillatory motion;a51.8; G
518, M523933.
cm5
]cm

]x
50, m51,2, T15

12z

11ka
~z.0!,

T25
12kz

11ka
~z,0!, x50,L. ~30!

The boundary conditions~a! correspond to roll-like spatially
periodic patterns in a laterallyinfinite two-layer system, and
are used for the comparison of numerical results with th
of the linear theory developed for the infinite system. T
boundary conditions~b! correspond to a closed cavity wit
well conducting lateral walls.

The boundary value problem~21!–~30! is solved by the
finite difference method~for details, see Ref.@8#!. A second
order approximation on a uniform mesh is used for the s
tial coordinates. The integration of evolution equations
performed by means of an explicit scheme. We used a r
angular mesh 28356.

In order to estimate the precision of our numeric
method, as well as the influence of the lateral boundary c
ditions on the threshold of the oscillatory instability, w
found the critical Grashof numberG* for a fixed value of the
Marangoni numberM523933 for geometrical parameter
a51.8 andL53. For this goal, we calculated the asympto
~at larget) growth rate of small disturbances imposed on t
equilibrium state. We foundG

*
(1)513.0 for free heat-

insulated boundary conditions~29! andG
*
(2)517.5 for rigid

isothermic boundary conditions~30!. The corresponding
critical Grashof number obtained by means of the stand
linear theory is G

*
(0)515.5. The discrepancyu(G

*
(1)

2G
*
(0))/G

*
(0)u'0.16 characterizes the precision of o

method, while the parameteru(G
*
(2)2G

*
(1))/G

*
(2)u'0.35

evaluates the influence of the rigid isothermic boundary c
ditions.

B. Numerical results

We focus now on the convective motions in the clos
cavity having a lateral extension ofL53, with well conduct-
ing lateral walls. The chosen value ofL is close to the wave-
length of the critical disturbance. We expect that for suc

FIG. 13. Dependence of the inverse period of symmetric os
lationst21 on 2M .
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FIG. 14. Streamlines for the asymmetric~type I! oscillatory motion in the system witha51.8, G523, M5220 520.
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value ofL the influence of lateral boundaries is essential,
it cannot completely suppress the oscillations.

As was predicted by linear theory, in the casea51 only
stationary motions were found. An example of such a mot
is shown in Fig. 7. The structure of the motion is typical f
the thermocapillary convection in the closed cavity~see Ref.
@8#!; the buoyancy effects are not essential.

In the casea51.8, both stationary and oscillatory motion
were found. The map of regimes is shown in Fig. 8. If t
thermocapillary effect is negligible, the convection is statio
ary, and it takes place mainly in the lower layer~see Fig. 9!.
There exist two different stable stationary motions with o
posite directions of vortices’ rotation: structure A with a
upward motion in the middle of the lower layer, and stru
ture B with a downward motion in the middle of the low
t

n

-

-

-

layer. Both of them are perfectly symmetric:

Tm~x,z!5Tm~L2x,z!, cm~x,z!52cm~L2x,z!,

m51,2. ~31!

In the presence of the thermocapillary effect, seve
types of oscillatory motions can appear. First, let us desc
thesymmetrictime-periodic convective oscillations for som
fixed values ofM and G. In a certain moment of time, the
structure of the convective motion@Figs. 10~a1! and 10~a2!#
is similar to the structure A of the buoyancy convection~see
Fig. 8!. The upward motion in the lower layer generates t
temperature field on the interface which has a maximum
the middle of the interface. Because of the anomalous th
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mocapillary effect the tangential stresses appear which
directed toward this maximum. These stresses produc
four-vortex motion near the interface, so that a three-st
structure is produced@see Figs. 10~b1! and 10~b2!#. Because
the Prandtl numbers of both fluids are rather large, the fi
of temperature is much more inertial than that of the stre
function. That is why the field of temperature generated
the structure A exists during some time and supports both
buoyancy-induced motion in the lower part of the seco
layer and the thermocapillarity induced motion around
interface. Finally the former motion is completely ousted
the latter one@see Figs. 10~c1! and 10~c2!#. Consequently,
the temperature maximum in the middle of the interface d
appears. The thermocapillary motion near the interface
cays, while in the lower layer the buoyancy convection of
type B is developed@see Figs. 10~d1! and 10~d2!#. The tran-
sition between the structures A and B takes place during
first half of the period. The subsequent evolution can be
derstood in the similar way: the temperature field genera
by the structure B produce a thermocapillary motion near
interface @see Figs. 10~e1! and 10~e2!# which replaces the
buoyancy-induced motion in the lower layer@see Figs. 10~f1!
and 10~f2!#, but afterwards the temperature field in the low
layer is rearranged and the structure A@see Figs. 10~a1! and
10~a2!# is restored.

Though the transitions look complicated, actually the
are rather simple, weakly nonharmonic oscillations co
nected with the only oscillatory mode. That becomes clea
we consider the time evolution of integral variables of t
motion like

S1l~ t !5E
0

L/2

dxE
0

1

dzc1~x,z,t !,

~32!

S2l~ t !5E
0

L/2

dxE
2a

0

dzc2~x,z,t !

characterizing the intensity of the motion in the left halves
the layers~see Fig. 11! and the corresponding phase traje
tory ~see Fig. 12!. In every instance of time, the field of th
temperatureT(x,z) and the field of the stream functio
c(x,z) satisfy the symmetry conditions~31!. Therefore the
integral variables

S1r~ t !5E
L/2

L

dxE
0

1

dzc1~x,z,t !,

~33!

S2r~ t !5E
L/2

l

dxE
2a

0

dzc2~x,z,t !

characterizing the intensity of the motion in the right halv
of layers are given by the relations

S1r~ t !52S1l~ t !, S2r~ t !52S2l~ t !. ~34!

For a fixed value ofG, the frequency of symmetric oscilla
tions grows withuM u ~see Fig. 13!.

Some different types of oscillations were found for larg
values ofG. For instance, if the Marangoni number is fixe
asM5220 520, the symmetric oscillations take place in t
region 21,G,22.5. WhenG523, the symmetric oscilla-
re
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tions are unstable, and a certain type~I! of asymmetric time-
periodic oscillations appears~see Fig. 14!. The latter type of
oscillations is characterized by the appearance of vortice
a relatively large horizontal size in the lower~thicker! layer.
Note that a similar phenomenon was observed in the cas
the steady Rayleigh–Marangoni–Be´nard convection in a
two-layer system by Cardin and Nataf@33#. The phase tra-
jectory in variablesS1l , S1r , which demonstrates the trans
tion between the two types of oscillations is shown in F
15. The symmetry properties~31! and ~34! are violated for
this type of asymmetric oscillations, but the following rel
tions hold:

Tm~x,z,t1t/2!5Tm~L2x,z,t !,
~35!

cm~x,z,t1t/2!52cm~L2x,z,t !, m51,2,

where t is the period of oscillations. Therefore, the pha
trajectory in variablesS1l , S1r is symmetric@see Fig. 16~a!#.

If the absolute value of the Marangoni numberuM u de-
creases for a fixedG528, a transition from the asymmetri
oscillations of the type I to another type~II ! of asymmetric
time-periodic oscillations takes place. The phase trajector
variablesS1l , S1r is not symmetric anymore@see Figs. 16~b!
and 16~c!#; thus,~35! does not hold. Actually, there are tw
different solutions connected by the transformationx→L
2x. We note that there is a wide hysteresis between as
metric oscillations and symmetric stationary motions. F
lower values ofuM u complicated time periodic@see Figs.
16~d! and 16~e!# and aperiodic oscillatory motions tak
place. AtG531 the asymmetric oscillations of the type I a
restored@see Fig. 16~f!#.

We have also calculated convective motions in cavit
with larger values of the aspect ratioL. We came to the
conclusion that the oscillatory structures are qualitativ
similar to those found atL53. A snapshot of an oscillatory

FIG. 15. Transition betweeen symmetric and asymmetric os
lations ~type I! on the phase plane (S1l ,S1r); G523, M
5220 520.
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FIG. 16. Phase trajectories:~a! G528, M5220 520;~b! G528, M5211115;~c! G528, M523078; ~d! G528, M522394; ~e!
G528, M52770; ~f! G531; M522394.
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motion at L56 is shown in Fig. 17. As was mentione
above, in the lower~thicker! layer one observes some vort
ces of a relatively large horizontal size~see Ref.@33#!.

V. CONCLUSIONS

We found that the combined action of the buoyancy a
the anomalous thermocapillary effect generates some spe
d
ific

new types of convective oscillations. The nature of the c
sidered oscillatory instability mechanism is different fro
both Rayleigh–Be´nard oscillations and Marangoni oscilla
tions. The appearance of the previously oscillations is cau
by thecompetitionof the buoyancy and the anomalous the
mocapillary effect. The observed oscillations have differe
symmetry properties. The stability regions of oscillations a
stationary motions overlap.
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FIG. 17. ~a! Streamlines and~b! isotherms for
the oscillatory motion in the system withL56
(G540, M526849).
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